Strong solution for a stochastic model of two-dimensional second grade fluids : existence, uniqueness and asymptotic behaviour
نویسندگان
چکیده
We investigate a stochastic evolution equation for the motion of a second grade fluid filling a bounded domain of R. Global existence and uniqueness of strong probabilistic solution is established. In contrast to previous results on this model we show that the sequence of Galerkin approximation converges in mean square to the exact strong probabilistic solution of the problem. We also give two results on the long time behaviour of the solution. Mainly we prove that the strong solution of our stochastic model converges exponentially in mean square to the stationary solution of the time-independent second grade fluids equations if the deterministic part of the external force does not depend on time. If the deterministic forcing term explicitly depends on time, then the strong probabilistic solution decays exponentially in mean square.
منابع مشابه
On the Strong Solution for the 3D Stochastic Leray-Alpha Model
We prove the existence and uniqueness of strong solution to the stochastic Leray-α equations under appropriate conditions on the data. This is achieved by means of the Galerkin approximation scheme. We also study the asymptotic behaviour of the strong solution as alpha goes to zero. We show that a sequence of strong solutions converges in appropriate topologies to weak solutions of the 3D stoch...
متن کاملGlobal Strong Solution to the Density-dependent Incompressible Viscoelastic Fluids
The existence and uniqueness of the global strong solution with small initial data to the three-dimensional density-dependent incompressible viscoelastic fluids is established. The local existence and uniqueness of the global strong solution with small initial data to the three-dimensional compressible viscoelastic fluids is also obtained. A new method is developed to estimate the solution with...
متن کاملA new block by block method for solving two-dimensional linear and nonlinear Volterra integral equations of the first and second kinds
In this paper, we propose a new method for the numerical solution of two-dimensional linear and nonlinear Volterra integral equations of the first and second kinds, which avoids from using starting values. An existence and uniqueness theorem is proved and convergence isverified by using an appropriate variety of the Gronwall inequality. Application of the method is demonstrated for solving the ...
متن کاملExistence and uniqueness of the solution of fuzzy-valued integral equations of mixed type
In this paper, existence theorems for the fuzzy Volterra-Fredholm integral equations of mixed type (FVFIEMT) involving fuzzy number valued mappings have been investigated. Then, by using Banach's contraction principle, sufficient conditions for the existence of a unique solution of FVFIEMT are given. Finally, illustrative examples are presented to validate the obtained results.
متن کاملSolutions of Stochastic Navier – Stokes Equations
driven by white noise Ẇ . Under minimal assumptions on regularity of the coefficients and random forces, the existence of a global weak (martingale) solution of the stochastic Navier–Stokes equation is proved. In the two-dimensional case, the existence and pathwise uniqueness of a global strong solution is shown. A Wiener chaosbased criterion for the existence and uniqueness of a strong global ...
متن کامل